Vertex-Transitive Graphs Of Prime-Squared Order Are Hamilton-Decomposable
نویسندگان
چکیده
We prove that all connected vertex-transitive graphs of order p, p a prime, can be decomposed into Hamilton cycles.
منابع مشابه
Two-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملNormal edge-transitive Cayley graphs on the non-abelian groups of order $4p^2$, where $p$ is a prime number
In this paper, we determine all of connected normal edge-transitive Cayley graphs on non-abelian groups with order $4p^2$, where $p$ is a prime number.
متن کاملar X iv : m at h / 06 06 58 5 v 1 [ m at h . C O ] 2 3 Ju n 20 06 HAMILTONICITY OF VERTEX - TRANSITIVE GRAPHS OF ORDER 4 p
It is shown that every connected vertex-transitive graph of order 4p, where p is a prime, is hamiltonian with the exception of the Coxeter graph which is known to possess a Hamilton path. In 1969, Lovász [22] asked if every finite, connected vertex-transitive graph has a Hamilton path, that is, a path going through all vertices of the graph. With the exception of K 2 , only four connected verte...
متن کاملHamilton cycles and paths in vertex-transitive graphs - Current directions
In this article current directions in solving Lovász’s problem about the existence of Hamilton cycles and paths in connected vertex-transitive graphs are given. © 2009 Elsevier B.V. All rights reserved. 1. Historical motivation In 1969, Lovász [59] asked whether every finite connected vertex-transitive graph has a Hamilton path, that is, a simple path going through all vertices, thus tying toge...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012